
COP 4610L: Applications in the Enterprise Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Spring 2005

Programming Multithreaded Applications in Java
Part 1

COP 4610L: Applications in the Enterprise
Spring 2005

Programming Multithreaded Applications in Java
Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4610L/spr2005

COP 4610L: Applications in the Enterprise Page 2 Mark Llewellyn ©

Introduction to Threads in Java
• In state-of-the art software, a program can be composed of

multiple independent flows of control.

• A flow of control is more commonly referred to as a process or
thread.

• In most of the Java programs that you’ve written (probably)
there was a single flow of control. Most console-based
programs begin with the first statement of the method main()
and work forward to the last statement of the method main().
Flow of control is often temporarily passed to other methods
through invocations, but the control returned to main() after
their completion.

• Programs with a single control flow are known as sequential
processes.

COP 4610L: Applications in the Enterprise Page 3 Mark Llewellyn ©

Introduction to Threads in Java (cont.)

• Java supports the creation of programs with concurrent flows of
control. These independent flows of control are called threads.

• Threads run within a program and make use of that program’s
resources in their execution. For this reason threads are also
called lightweight processes (LWP).

• The ability to run more than one process simultaneously is an
important characteristic of modern OS such as Linux/Unix and
Windows.

– The following two pages show screen shots of a set of
applications running on my office PC as well as the set of OS and
applications processes required to run those applications.

COP 4610L: Applications in the Enterprise Page 4 Mark Llewellyn ©

Applications running on
my office PC

COP 4610L: Applications in the Enterprise Page 5 Mark Llewellyn ©

Some of the processes
running the applications
running on my office PC

CPU working hard!!!

COP 4610L: Applications in the Enterprise Page 6 Mark Llewellyn ©

A multithreaded program
ends when all of its
individual flows of control
(threads) end.

Multithreaded Program
{

statement 1;
statement 2;
…
statement x;
…
statement y;
…
statement z;

}

Thread B
{

B statement 1;
B statement 2;
…
statement r;

}
Thread C
{

C statement 1;
C statement 2;
…
C statement t;

}

Thread A
{

A statement 1;
A statement 2;
…
A statement m;
…
A statement n;

}

This statement starts thread
B. After starting the thread,
the program continues with
the next statement.

This statement starts
thread A. After starting
thread A, the program
continues with the next
statement.

This statement in
thread A starts thread
C. Thread A continues
with next statement.

COP 4610L: Applications in the Enterprise Page 7 Mark Llewellyn ©

Thread A

Thread B

Thread C

Thread Execution in a Multiprocessor Environment

Thread C

Thread B

Thread A

Thread Execution in a Uniprocessor Environment

COP 4610L: Applications in the Enterprise Page 8 Mark Llewellyn ©

The Java Thread Class
java.lang.Runnable

java.lang.Thread

+Thread()
+Thread (target: Runnable)
+run(): void

+start(): void
+interrupt(): void
+isAlive(): boolean
+setPriority(p: int): void
+join(): void
+sleep(millis: long): void
+yield(): void
+isInterrupted(): boolean
+currentThread(): Thread

Creates a default thread.

Invoked by the JVM to execute the thread. You must override this
method and provide the code you want your thread to execute in your
thread class. This method is never directly invoked by a the runnable
object in a program, although it is an instance method of a runnable
object.

Starts the thread that causes the run() method to be invoked by the JVM

Interrupts this thread. If the thread is blocked, it is ready to run again.

Tests if the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Creates a new thread to run the target object

Causes this thread to temporarily pause and allow other threads to execute

Tests if the current thread has been interrupted

Returns a reference to the currently executing thread object.

COP 4610L: Applications in the Enterprise Page 9 Mark Llewellyn ©

Java Classes and Threads
• Java has several classes that support the creation and

scheduling of threads.

• The two basic ways of creating threads in Java are:

– 1) extending the Thread class

– or 2) implementing the Runnable interface.

(Both are found in package java.lang. Thread actually
implements Runnable.)

• We’ll look at a slightly different for creating and
scheduling threads later using the java.util.Timer
and java.util.TimerTask classes.

COP 4610L: Applications in the Enterprise Page 10 Mark Llewellyn ©

Java Classes and Threads (cont.)

• The following two simple examples, illustrate the differences in
creating threads using these two different techniques.

• The example is simple, three threads are created, one that prints
the character ‘A’ twenty times, one that prints the character ‘B’
twenty times, and a third thread that prints the integer numbers
from 1 to 20.

• The first program is an example of extending the thread class.
The second program is an example of using the Runnable
interface. This latter technique is the more common and
preferred technique. While we will see more examples of this
technique later, this simple example will illustrate the
difference in the two techniques.

COP 4610L: Applications in the Enterprise Page 11 Mark Llewellyn ©

//Custom Thread Class
Public class CustomThread extends Thread
{ …

public CustomThread(…)
{

…
}
//Override the run method in Thread
//Tell system how to run custom thread
public void run()
{

…
}
…

} //end CustomThread Class

//Client Class to utilize CustomThread
Public class Client
{ …

public void someMethod()
{

…
//create a thread
CustomThread thread1 =

new CustomThread(…);
//start a thread
thread1.start();
…

//create another thread
CustomThread thread2 =

new CustomThread(…);
//start another thread
thread2.start();
…

}
…
} //end Client Class

Template for defining a thread class by
extending the Thread class. Threads
thread1 and thread2 are runnable objects
created from the CustomThread class.
The start method informs the system that
the thread is ready to run.

COP 4610L: Applications in the Enterprise Page 12 Mark Llewellyn ©

//Custom Thread Class
Public class CustomThread implements Runnable
{ …

public CustomThread(…)
{

…
}
//Implement the run method in Runnable
//Tell system how to run custom thread
public void run()
{

…
}
…

} //end CustomThread Class

//Client Class to utilize CustomThread
Public class Client
{ …

public void someMethod()
{

…
//create an instance of CustomThread
CustomThread custhread =

new CustomThread(…);
…

//create a thread
Thread thread =

newThread(custhread);
…
//start a thread
thread.start();
…

}
…
} //end Client Class

Template for defining a thread class by
implementing the Runnable interface. To
start a new thread with the Runnable
interface, you must first create an instance of
the class that implements the Runnable
interface (in this case custhread), then use
the Thread class constructor to construct a
thread.

COP 4610L: Applications in the Enterprise Page 13 Mark Llewellyn ©

Start thread execution
after a 0 msec delay
(i.e., immediately)

//Class to generate threads by extending the Thread class
public class TestThread {

// Main method
public static void main(String[] args) {

// Create threads
PrintChar printA = new PrintChar('a', 20);
PrintChar printB = new PrintChar('b', 20);
PrintNum print20 = new PrintNum(20);

// Start threads
print20.start();
printA.start();
printB.start();

}
}

// The thread class for printing a specified character a specified number of times
class PrintChar extends Thread {
private char charToPrint; // The character to print
private int times; // The times to repeat

// Construct a thread with specified character and number of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;
times = t;

}

Extension of the Thread
class

COP 4610L: Applications in the Enterprise Page 14 Mark Llewellyn ©

// Override the run() method to tell the system what the thread will do
public void run() {

for (int i = 0; i < times; i++)
System.out.print(charToPrint);

}
}

// The thread class for printing number from 1 to n for a given n
class PrintNum extends Thread {
private int lastNum;

// Construct a thread for print 1, 2, ... i
public PrintNum(int n) {

lastNum = n;
}

// Tell the thread how to run
public void run() {

for (int i = 1; i <= lastNum; i++)
System.out.print(" " + i);

}
} //end class TestThread

Overriding the run method
in the Thread class

COP 4610L: Applications in the Enterprise Page 15 Mark Llewellyn ©

Sample executions of class
TestThread. Notice that the output
from the three threads is interleaved.
Also notice that the output sequence
is not repeatable.

COP 4610L: Applications in the Enterprise Page 16 Mark Llewellyn ©

Main method simple
creates a new
Runnable object and
terminates.

//Class to generate threads by implementing the Runnable interface
public class TestRunnable {

// Create threads
Thread printA = new Thread(new PrintChar('a', 20));
Thread printB = new Thread(new PrintChar('b', 20));
Thread print20 = new Thread(new PrintNum(20));

public static void main(String[] args) {
new TestRunnable();

}

public TestRunnable() {
// Start threads
print20.start();
printA.start();
printB.start();

}

// The thread class for printing a specified character in specified times
class PrintChar implements Runnable {
private char charToPrint; // The character to print
private int times; // The times to repeat

// Construct a thread with specified character and number of times to print the character
public PrintChar(char c, int t) {
charToPrint = c;
times = t;

}

Runnable object starts
thread execution.

Implements the
Runnable interface.

COP 4610L: Applications in the Enterprise Page 17 Mark Llewellyn ©

// Override the run() method to tell the system what the thread will do
public void run() {
for (int i = 0; i < times; i++)

System.out.print(charToPrint);
}

}

// The thread class for printing number from 1 to n for a given n
class PrintNum implements Runnable {
private int lastNum;

// Construct a thread for print 1, 2, ... i
public PrintNum(int n) {

lastNum = n;
}

// Tell the thread how to run
public void run() {
for (int i = 1; i <= lastNum; i++)

System.out.print(" " + i);
}

}
} //end class TestRunnable

Override the run method for
both types of threads.

COP 4610L: Applications in the Enterprise Page 18 Mark Llewellyn ©

Sample executions of class
TestRunnable. Notice that the
output from the three threads is
interleaved. Also notice that the
output sequence is not repeatable.

COP 4610L: Applications in the Enterprise Page 19 Mark Llewellyn ©

Some Modifications to the Example
• To illustrate some of the methods in the Thread class, you

might want to try a few modifications to the TestRunnable
class in the previous example. Notice how the modifications
change the order of the numbers and characters in the output.

• Use the yield() method to temporarily release time for other
threads to execute. Modify the code in the run method in
PrintNum class to the following:

– Now every time a number is printed, the print20 thread yields, so
each number will be followed by some characters.

public void run() {
for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);
Thread.yield();

}

COP 4610L: Applications in the Enterprise Page 20 Mark Llewellyn ©

Some Modifications to the Example (cont.)

• The sleep(long millis) method puts the thread to sleep
for the specified time in milliseconds. Modify the code in the
run method in PrintNum class to the following:

– Now every time a number greater than 10 is printed, the print20
thread is put to sleep for 2 milliseconds, so all the characters will
complete printing before the last integer is printed.

public void run() {
for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);
try {

if (i >= 10) Thread.sleep(2);
}
catch (InterruptedException ex) { }

}
}

COP 4610L: Applications in the Enterprise Page 21 Mark Llewellyn ©

Some Modifications to the Example (cont.)

• You can use the join() method to force one thread to wait for
another thread to finish. Modify the code in the run method in
PrintNum class to the following:

– Now the numbers greater than 10 are printed only after thread
printA is finished.

public void run() {
for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);
try {

if (i == 10) printA.join();
}
catch (InterruptedException ex) { }

}
}

COP 4610L: Applications in the Enterprise Page 22 Mark Llewellyn ©

Other Java Classes and Threads

• We noted earlier that Java has several different classes that
support the creation and scheduling of threads. Classes
java.util.Timer and java.util.TimerTask are
generally the easiest to use. They allow a thread to be created
and run either at a time relative to the current time or at some
specific time.

• We’ll look at these classes briefly and give a couple of
examples.

COP 4610L: Applications in the Enterprise Page 23 Mark Llewellyn ©

Java Classes and Threads (cont.)

• Class Timer overloads the schedule() method three times
for creating threads after either some specified delay or at some
specific time.

– public void schedule(TimerTask task, long m);

• Runs task.run() after waiting m milliseconds.

– public void schedule(TimerTask task, long m, long n);

• Runs task.run() after waiting m milliseconds, then repeats it every n
milliseconds.

– Public void schedule(TimerTask task, Date t);

• Runs task.run() at the time indicated by date t.

• By extending the abstract class TimerTask and specifying
a definition for its abstract method run(), an application-
specific thread can be created.

COP 4610L: Applications in the Enterprise Page 24 Mark Llewellyn ©

Example – Thread Execution After a Delay

• The code listing on the following page gives a very simple
example of executing a thread after a delay (using the first
schedule() method from the previous page).

• The thread in this example, simply prints a character 10
times and then ends.

• Look at the code and follow the flow, then execute it on your
machine (code appears on the course webpage).

COP 4610L: Applications in the Enterprise Page 25 Mark Llewellyn ©

//displays characters in separate threads
import java.util.*;
public class DisplayCharSequence extends TimerTask {

private char displayChar;
Timer timer;

//constructor for character displayer
public DisplayCharSequence(char c){

displayChar = c;
timer = new Timer();
timer.schedule(this, 0);

}

//display the occurrences of the character
public void run() {

for (int i = 0; i < 10; ++i) {
System.out.print(displayChar);

}
timer.cancel();

}

//main
public static void main (String[] args) {

DisplayCharSequence s1 = new DisplayCharSequence(‘M’);
DisplayCharSequence s2 = new DisplayCharSequence(‘A’);
DisplayCharSequence s3 = new DisplayCharSequence(‘R’);
DisplayCharSequence s4 = new DisplayCharSequence(‘K’);

}
}

Start thread execution
after a 0 msec delay
(i.e., immediately)

A subclass implementation of
TimerTask’s abstract method
run() has typically two parts –
first part is application specific
(what the thread is supposed to
do) and the second part ends
the thread.

COP 4610L: Applications in the Enterprise Page 26 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise Page 27 Mark Llewellyn ©

Example – Repeated Thread Execution

• This next example demonstrates how to schedule a thread to
run multiple times. Basically, the thread updates a GUI-
based clock every second.

Sample
GUI

COP 4610L: Applications in the Enterprise Page 28 Mark Llewellyn ©

//displays current time – threaded execution
import java.util.*;
import javax.swing.JFrame;
import java.text.*;
import java.awt.*;

public class BasicClock extends TimerTask {
final static long MILLISECONDS_PER_SECOND = 1000;
private JFrame window = new JFrame(“Basic Clock”);
private Timer timer = new Timer();
private String clockFace = “”;

//constructor for clock
public BasicClock(){

//set up GUI
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setSize(200,60);
Container c = window.getContentPane();
c.setBackground(Color.WHITE);
window.setVisible(true);
//update GUI every second beginning immediately
timer.schedule(this,0,1*MILLISECONDS_PER_SECOND);

}

Two tasks: (1) configure the GUI
and (2) schedule the thread to
update the GUI-clock every
second.

This form of the overloaded schedule() method is
the second one shown on page 8 which uses a
delay and a repetition factor.

COP 4610L: Applications in the Enterprise Page 29 Mark Llewellyn ©

//display updated clock
public void run(){

Date time = new Date();
Graphics g = window.getContentPane().getGraphics();
g.setColor(Color.WHITE);
g.drawString(clockFace, 10, 20);
clockFace = time.toString();
g.setColor(Color.BLUE);
g.drawString(clockFace,10, 20);

}

//main
public static void main (String[] args) {

BasicClock clock = new BasicClock();
}

}

Date() returns current time to the
millisecond. toString() method returns a
textual representation of the date in the
form: w c d h:m:s z y
Where: w: 3 char-rep of day of week

c: 3 char-rep of month
d: 2 digit-rep of day of month
h: 2 digit-rep of hour
m: 2 digit-rep of minute within hr
s: 2 digit-rep of second within min
z: 3 char-rep of time zone
y: 4 char-rep of year

COP 4610L: Applications in the Enterprise Page 30 Mark Llewellyn ©

!! CAUTION !!
• Java provides two different standard classes named Timer. The class

we’ve used in the past two examples is part of the util API. There is
also a Timer class that is part of the swing API.

• In our previous example, we needed to make sure that we didn’t
inadvertently bring both Timer classes into our program which would
have created an ambiguity about which Timer class was being used.

• Although you cannot import both Timer classes into a single Java
source file, you can use both Timer classes in the same Java source file.
An import statement exists to allow a syntactic shorthand when using
Java resources; i.e., an import statement is not required to make use of
Java resources. Using fully qualified class names will remove the
ambiguity.

– java.util.Time t1 = new java.util.Timer();

– javax.swing.Timer t2 = new javax swing.Timer();

COP 4610L: Applications in the Enterprise Page 31 Mark Llewellyn ©

Example – Thread Execution At Specific Time

• This next example demonstrates how to schedule a thread to
run at a specific time. This example will create a couple of
threads to remind you of impending appointments.
Basically, the thread pops-up a window to remind you of the
appointment.

Sample
DisplayAlert

Window

COP 4610L: Applications in the Enterprise Page 32 Mark Llewellyn ©

//Displays an alert at a specific time - threaded execution
import javax.swing.JOptionPane;
import java.awt.*;
import java.util.*;

public class DisplayAlert extends TimerTask {
//instance variables

private String message;
private Timer timer;

//constructor
public DisplayAlert(String s, Date t){

message = s + ": " + t;
timer = new Timer();
timer.schedule(this, t);

}

//execute thread
public void run() {

JOptionPane.showMessageDialog(null, message, “Mark’s Message
Service”, JOPtionPane.INFORMATION_MESSAGE); //application specific task

timer.cancel(); //kill thread
}

Third version of
schedule() method as
shown on page 8.

COP 4610L: Applications in the Enterprise Page 33 Mark Llewellyn ©

public static void main(String[] args) {
Calendar c = Calendar.getInstance();

c.set(Calendar.HOUR_OF_DAY, 13);
c.set(Calendar.MINUTE, 23);
c.set(Calendar.SECOND, 0);

Date meetingTime = c.getTime();

c.set(Calendar.HOUR_OF_DAY, 10);
c.set(Calendar.MINUTE, 25);
c.set(Calendar.SECOND, 0);

Date classTime = c.getTime();

DisplayAlert alert1 = new DisplayAlert("Undergraduate
Committee Meeting", meetingTime);

DisplayAlert alert2 = new DisplayAlert("COP 4610L Class
Time", classTime);

}
}

Create two messages
to be displayed at
different times.

COP 4610L: Applications in the Enterprise Page 34 Mark Llewellyn ©

Sleeping
• In the three examples so far, all the threads performed some

action. Threads are also used to pause a program for some
period of time.

• Standard class java.lang.Thread has a class method
sleep() for pausing the flow of control.

public static void sleep (long n) throws InterruptedException

• For example, the following code segment will twice get and
display the current time, but the time acquisitions are
separated by 10 seconds by putting the process to sleep.

COP 4610L: Applications in the Enterprise Page 35 Mark Llewellyn ©

//Illustrates putting a process to sleep
import java.util.*;

public class ShowSleeping {

public static void main(String[] args) {
Date t1 = new Date();

System.out.println(“Thread goes to sleep at: “ +
t1);

try {
Thread.sleep(10000);

}
catch (InterruptedException e) {
}
Date t2 = new Date();
System.out.println(“Thread wakes up at: “ + t2);

}
}

Put the process to sleep
for 10 seconds.

COP 4610L: Applications in the Enterprise Page 36 Mark Llewellyn ©

Notice that the process has
slept for exactly 10 seconds
in both cases.

COP 4610L: Applications in the Enterprise Page 37 Mark Llewellyn ©

Life Cycle of a Thread
• At any given point in time, a thread is said to be in one of several

thread states as illustrated in the diagram below.

terminated

running

readynew

blocked

Thread
created

start()
run()yield() o

r tim
eout run() returns

Wait for target
to finish Wait for timeout Wait to be

notified

sleep()

wait()
interrupt()target

finished

interrupt()

notify() or
notifyAll()

join()

timeout

COP 4610L: Applications in the Enterprise Page 38 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A new thread begins its life cycles in the new state. It remains in this
state until the program starts the thread, which places the thread in the
ready state (also commonly referred to as the runnable state). A
thread in this state is considered to be executing its task, although at
any given moment it may not be actually executing.

• When a ready thread begins execution, it enters the running state. A
running thread may return to the ready state if its CPU time slice
expires or its yield() method is invoked.

• A thread can enter the blocked state (i.e., it becomes inactive) for
several reasons. It may have invoked the join(), sleep(), or
wait() method, or some other thread may have invoked these
methods. It may be waiting for an I/O operation to complete.

• A blocked thread can be reactivated when the action which
inactivated it is reversed. For example, if a thread has been put to
sleep and the sleep time has expired, the thread is reactivated and
enters the ready state.

COP 4610L: Applications in the Enterprise Page 39 Mark Llewellyn ©

Life Cycle of a Thread (cont.)

• A thread is terminated if it completes the execution of its
run() method.

• The isAlive() method is used to query the state of a thread.
This method returns true it a thread is in the ready, blocked, or
running state; it returns false if a thread is new and has not
started or if it is finished.

• The interrupt() method interrupts a thread in the
following way: If a thread is currently in the ready or running
state, its interrupted flag is set; if a thread is currently blocked,
it is awakened and enters the ready state, and a
java.lang.InterruptedException is thrown.

• Threads typically sleep when they momentarily do not have
work to perform. Example, a word processor may contain a
thread that periodically writes a copy of the current document
to disk for recovery purposes.

COP 4610L: Applications in the Enterprise Page 40 Mark Llewellyn ©

Life Cycle of a Thread (cont.)
• A runnable thread enters the terminated state when it completes

its task or otherwise terminates (perhaps due to an error
condition).

• At the OS level, Java’s runnable state actually encompasses two
separate states. The OS hides these two states from the JVM,
which sees only the runnable state.

– When a thread first transitions to the runnable state from the new
state, the thread is in the ready state. A ready thread enters the
running state (i.e., begins execution) when the OS assigns the thread
to a processor (this is called dispatching the thread). In most OS,
each thread is given a small amount of processor time – called a
quantum or time slice – with which to perform its task. When the
thread’s quantum expires, the thread returns to the ready state and the
OS assigns another thread to the processor. Transitions between
these states are handled solely by the OS.

COP 4610L: Applications in the Enterprise Page 41 Mark Llewellyn ©

Thread Priorities

• Every Java thread has a priority that helps the OS determine
the order in which threads are scheduled.

• Java priorities are in the range between MIN_PRIORITY (a
constant of 1) and MAX_PRIORITY (a constant of 10).

• Threads with a higher priority are more important to a
program and should be allocated processor time before
lower-priority threads. However, thread priorities cannot
guarantee the order in which threads execute.

• By default, every thread is given priority
NORM_PRIORITY (a constant of 5). Each new thread
inherits the priority of the thread that created it.

COP 4610L: Applications in the Enterprise Page 42 Mark Llewellyn ©

Priority 9

Priority 8

Priority 7

Priority 10

Priority 6

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

A B

D

C

E F

G

H I

J K

Ready threads

Thread.MIN_PRIORITY

Thread.MAX_PRIORITY

Thread.NORM_PRIORITY

Thread Priority Scheduling

COP 4610L: Applications in the Enterprise Page 43 Mark Llewellyn ©

Creating and Executing Threads
• In J2SE 5.0, the preferred means of creating a multithreaded

application is to implement the Runnable interface
(package java.lang) (see earlier examples also) and use
built-in methods and classes to create Threads that
execute the Runnables.

• The Runnable interface declares a single method named
run, Runnables are executed by an object of a class that
implements the Executor interface (package
java.util.concurrent). This interface declares a
single method named execute.

• An Executor object typically creates and managed a group
of threads called a thread pool. These threads execute the
Runnable objects passed to the execute method.

COP 4610L: Applications in the Enterprise Page 44 Mark Llewellyn ©

Creating and Executing Threads (cont.)

• The Executor assigns each Runnable to one of the
available threads in the thread pool. If there are no available
threads in the thread pool, the Executor creates a new thread
or waits for a thread to become available and assigns that thread
the Runnable that was passed to method execute.

• Depending on the Executor type, there may be a limit to the
number of threads that can be created. Interface
ExecutorService (package java.util.concurrent) is a
subinterface of Executor that declares a number of other
methods for managing the life cycle of the Executor. An object
that implements this ExecutorService interface can be created
using static methods declared in class Executors (package
java.util.concurrent). The next examples illustrates
these.

COP 4610L: Applications in the Enterprise Page 45 Mark Llewellyn ©

Multithreading Example – Sleeping/Waking Threads

// PrintTask class sleeps for a random time from 0 to 5 seconds
import java.util.Random;

public class PrintTask implements Runnable
{

private int sleepTime; // random sleep time for thread
private String threadName; // name of thread
private static Random generator = new Random();

// assign name to thread
public PrintTask(String name)
{

threadName = name; // set name of thread

// pick random sleep time between 0 and 5 seconds
sleepTime = generator.nextInt(5000);

} // end PrintTask constructor

COP 4610L: Applications in the Enterprise Page 46 Mark Llewellyn ©

Multithreading Example – Sleeping/Waking Threads

// method run is the code to be executed by new thread
public void run()
{

try // put thread to sleep for sleepTime amount of time
{
System.out.printf("%s going to sleep for %d milliseconds.\n",

threadName, sleepTime);

Thread.sleep(sleepTime); // put thread to sleep
} // end try
// if thread interrupted while sleeping, print stack trace
catch (InterruptedException exception)
{
exception.printStackTrace();

} // end catch
// print thread name
System.out.printf("%s done sleeping\n", threadName);

} // end method run
} // end class PrintTask

COP 4610L: Applications in the Enterprise Page 47 Mark Llewellyn ©

Multithreading Example – Create Threads and Execute
// Multiple threads printing at different intervals.
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
public class RunnableTester
{

public static void main(String[] args) {
// create and name each runnable
PrintTask task1 = new PrintTask("thread1");
PrintTask task2 = new PrintTask("thread2");
PrintTask task3 = new PrintTask("thread3");

System.out.println("Starting threads");

// create ExecutorService to manage threads
ExecutorService threadExecutor = Executors.newCachedThreadPool();
// start threads and place in runnable state
threadExecutor.execute(task1); // start task1
threadExecutor.execute(task2); // start task2
threadExecutor.execute(task3); // start task3

threadExecutor.shutdown(); // shutdown worker threads

System.out.println("Threads started, main ends\n");
} // end main

} // end class RunnableTester

COP 4610L: Applications in the Enterprise Page 48 Mark Llewellyn ©

Example Executions of
RunnableTester.java

